Efficient Data Gathering in Wireless Sensor Networks Based on Matrix Completion and Compressive Sensing
نویسندگان
چکیده
Gathering data in an energy efficient manner in wireless sensor networks is an important design challenge. In wireless sensor networks, the readings of sensors always exhibit intra-temporal and inter-spatial correlations. Therefore, in this letter, we use low rank matrix completion theory to explore the inter-spatial correlation and use compressive sensing theory to take advantage of intra-temporal correlation. Our method, dubbed MCCS, can significantly reduce the amount of data that each sensor must send through network and to the sink, thus prolong the lifetime of the whole networks. Experiments using real datasets demonstrate the feasibility and efficacy of our MCCS method.
منابع مشابه
STCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach
Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...
متن کاملDistributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کاملSpatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks
Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a nov...
متن کاملEnergy efficient data gathering using compressive sensing in wireless sensor networks
Wireless sensor networks are autonomous distributed networks which consist of a collection of wireless nodes deployed to sense a field of interest. To achieve energy efficient data gathering from a sensor network we are proposing an innovative concept of compressive sensing for the collection of data from individual nodes to the Base Station. Compressive sensing exploits the spatio-temporal cor...
متن کاملAn Energy-Efficient Wireless Sensor Networks Utilizing LMS Filter and Matrix Completion
The energy consumption is one of the challenges that faces wireless sensor networks (WSNs) applications which require long lifetimes. Fortunately, most sensing data are spatially and temporally correlated. Low-rank matrix completion, which is an extension to compressive sensing, capable of recovering a sensed signal from a small number of random measurements, far below the traditional NyquistSh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1302.2244 شماره
صفحات -
تاریخ انتشار 2013